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Abstract

Modern society is critically dependent on the services
provided by engineered infrastructure networks. When
natural disasters (e.g. Hurricane Sandy) occur, the abil-
ity of these networks to provide service is often de-
graded because of physical damage to network com-
ponents. One of the most critical of these networks is
the electrical distribution grid, with medium voltage
circuits often suffering the most severe damage. How-
ever, well-placed upgrades to these distribution grids
can greatly improve post-event network performance.
We formulate an optimal electrical distribution grid de-
sign problem as a two-stage, stochastic mixed-integer
program with damage scenarios from natural disas-
ters modeled as a set of stochastic events. We develop
and investigate the tractability of an exact and several
heuristic algorithms based on decompositions that are
hybrids of techniques developed by the AI and opera-
tions research communities. We provide computational
evidence that these algorithms have significant benefits
when compared with commercial, mixed-integer pro-
gramming software.

Introduction
Natural disasters such as earthquakes, hurricanes, and other
extreme weather pose serious risks to modern critical in-
frastructure including electrical distribution grids. At the
peak of Hurricane Sandy, 65% of New Jersey’s customers
lost power (Mansfield and Linzey 2013). Recent U.S. gov-
ernment sources (Executive Office of the President 2013;
US Department of Energy 2013) suggest that new method-
ologies for improving system resilience to these events is
necessary. Here, we focus on developing methods for de-
signing and upgrading distribution grids to better withstand
and recover from these threats that are inspired by tech-
niques developed in the artificial intelligence and operations
research communities. Our approach minimizes the upgrade
budget while meeting a minimum standard of service by
selecting from a set of potential upgrades, e.g. adding re-
dundant lines, adding distributed (microgrid) generation (i.e.
wind, solar, and combined heat and power), hardening exist-
ing components, etc.
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We formulate our approach, i.e. Optimal Resilient Dis-
tribution Grid Design (ORDGDP), as a two-stage mixed-
integer program. The first (investment) stage selects from
the set of potential upgrades to the network. The second (op-
erations) stage evaluates the network performance benefit of
the upgrades against a set of damage scenarios sampled from
a stochastic distribution. We first develop an exact solution
method that exploits decomposition across the sampled sce-
narios. We also develop a metaheuristic that we call Scenario
Based Variable Neighborhood Decomposition Search (SB-
VNDS) that is a hybrid of Variable Neighborhood Search
(Lazic et al. 2010) and the exact method. We present numeri-
cal evidence that our exact method is more efficient than out-
of-the-box commercial mixed-integer programming solvers,
and that our heuristic achieves near-optimal results in a frac-
tion of the time required by exact methods.

Literature Review Network design problems and their
variations are generally NP-complete (Tomaszewski, Pióro,
and Żotkiewicz 2010; Nace et al. 2013; Johnson, Lenstra,
and Kan 1978). However, recent work by (Bent, Berscheid,
and Toole 2010) demonstrates that AI-based methods can
lead to substantial improvement for realistic applications.

While the specific problem of designing resilient distri-
bution systems is novel, a number of related problems ex-
ist. The flow of electric power in tree-like distribution net-
works is related to multi-commodity network flows mak-
ing our problem similar to the design of multi-commodity
flow networks with stochastic link and edge failures (San-
toso et al. 2003; Garg and Smith 2008). However, the sec-
ond stage of our formulation requires binary variables mak-
ing our problem considerably more difficult than typical
second-stage flow problems. The interdiction literature in-
cludes related max-min or min-max problems where the
goal is to operate or design a system to make it as resilient
as possible to an adversary who can damage up to k el-
ements. Such models are similar to ours if a k is chosen
that bounds the worst-case disaster (Chen and Phillips 2013;
Chen et al. 2014; Salmeron, Wood, and Baldick 2009;
Delgadillo, Arroyo, and Alguacil 2010). Binary variables
at all stages make these models computationally challeng-
ing and solvable only for small k. Here, we exploit the
probabilistic nature of our adversary to increase the size of
tractable problems (eliminates a stage of binary variables).



In power engineering, papers have primarily focused on
resilient system operation (Golari, Fan, and Wang 2014;
Li et al. 2014; Khushalani, Solanki, and Schulz 2007) us-
ing controls such as line switching. The ORDGDP is a fun-
damental generalization of the resilient operations problem
because 1) this problem is embedded in our second stage
and 2) minimizing the number of switch actions (Li et al.
2014) can be thought of as a design problem for a single
scenario. Finally, there is also a general power grid expan-
sion planning problem for stochastic events (Jabr 2013) that
is a variant of the single commodity flow problem, with the
twist that flows are not directly controllable. Like stochastic
multi-commodity flow, the second-stage variables are not bi-
nary.

The key contributions of the paper include:

• Computationally efficient algorithms for solving stochas-
tic network design problems with discrete variables at
each stage. The algorithms are based on hybrid opti-
mization methods similar to recent work that combines
Bender’s Decomposition with heuristic master solutions
(Raidl, Baumhauer, and Hu 2014).

• Introduction of a problem of critical importance to energy
problems where AI researchers can make significant con-
tributions. AI has made many recent significant contribu-
tions to energy problems (Hentenryck, Gillani, and Cof-
frin 2012; Reddy and Veloso 2012; Coffrin, Hentenryck,
and Bent 2012; Garg, Jayram, and Narayanaswamy 2013;
Reddy and Veloso 2013; Jain, Narayanaswamy, and Nara-
hari 2014; Reddy and Veloso 2011; Shann and Seuken
2013; Thibaux et al. 2013).

Problem Description
Nomenclature

Parameters
N set of nodes (buses).
E set of edges (lines and transformers).
S set of disaster scenarios.
Ds set of edges that are inoperable during s ∈ S.
D′s set of edges that are inoperable even though they are

hardened during disaster s ∈ S.
cij cost to build a line between bus i and j. 0 if line

already exists.
κij cost to build a switch on a line between bus i and j.
ψij cost to harden a line between bus i and j.
ζi,k cost of generation capacity on phase k at bus i.
αi cost to build a generation facility at node i.
Qijk line capacity between bus i and bus j on phase k.
Pij set of phases for the line between bus i and bus j.
Pi set of phases allowed to consume or inject at bus i.
βij parameter for controlling how much variation in

flow between the phases is allowed.
di,k demand for power at bus i for phase k.
Gi,k existing generation capacity on phase k at node i.
Zi,k maximum amount of generation capacity on phase

k that can be built at node i.
C the set of sets of nodes that includes a cycle.
λ fraction of critical load that must be served.

γ fraction of all load that must be served.
L set of buses whose load is critical.
Variables
xij determines if line i, j is built.
τij determines if line i, j has a switch.
tij determines if line i, j is hardened.
zi,k determines the capacity for generation on phase k at

node i.
ui determines the generation capacity built at node i.
xsij determines if line i, j is used during disaster s.
τsij determines if switch i, j is used during disaster s.
tsij determines if line i, j is hardened during disaster s.
zsi,k determines the capacity for generation on phase k at

bus i during disaster s.
usi indicates if the generation capacity is used at node i

during disaster s.
gsi,k generation produced for bus i on phase k during dis-

aster s.
lsi,k load delivered at bus i on phase k during disaster s.
ysij determines if the jth load at bus i is served or not

during disaster s.
fsij,k flow between bus i and bus j on phase k during dis-

aster s.
x̄sij determines if at least one edge between i and j is

used during disaster s.
τ̄sij determines if at least one switch between i and j is

used during disaster s.
xsij,0 determines if there exists flow on line i, j from j to

i, during disaster s.
xsij,1 determines if there exists flow on line i, j from i to

j, during disaster s.

Distribution Grid Modeling A distribution network is
modeled as a graph with nodes N (buses) and edges E
(power lines and transformers). In the physical system, each
edge is composed of one, two, or three circuits or “phases”
and the electrical loads at the nodes are connected to and
consume power from specific phases (Garcia et al. 2000)
(P). In many papers, multiple phases are approximated as
a single phase with a single edge flow. However, under the
damaged and stressed conditions considered in this work,
the flows on the phases are often unbalanced, i.e. unequal,
making it important to model all phases to accurately evalu-
ate flow constraints on each phase. The phase flows are not
directly controllable, but are related to nodal voltages and
power injections by non-convex, physics-based equations
(Garcia et al. 2000). Incorporation of these equations into
the current formulation increases the complexity, however,
the structure of distribution networks enables a simplifica-
tion.

The design of protection systems for the vast majority of
distribution circuits is based on the these circuits having a
tree-like structure. Therefore, although distribution grids are
often designed to contain many possible loops, switches are
used to ensure that these grids are operated in a tree or for-
est topology. While, the switches introduce binary variables
that increase the complexity of the ORDGDP, a linearized
version of the electrical power flow equations (i.e. DC power



flow) on the resulting trees is equivalent to a commodity flow
model. We use a multi-commodity flow model that models
each phase separately (Fig. 1).

The linearization of the power flow equations assumes
uniform voltage magnitude at all nodes and ignores reac-
tive power flows. In practice, we expect these are reasonable
approximations because, prior to being upgraded, the distri-
bution grid is already feasible with respect to voltage and
reactive power flows. By adding lines or distributed power
sources, we put loads closer to generation thereby reducing
voltage variability and reactive power flow and the potential
for violating unmodeled constraints. In principle, it is possi-
ble to construct solutions where this is not the case, but the
solutions to ORDGDP found by our algorithms has not re-
sulted in these situations. However, this is an important area
of future work, and we are developing methods to eliminate
solutions that violate voltage or reactive power flow limits.

Damage Modeling The ORDGDP is also defined by a set
of scenarios, S. These scenarios are provided by a user or are
drawn from a probabilistic damage model (the case here).
Each scenario is defined by the lines of the network that are
damaged and are inoperable. Many networks consist of mix
of line and pole types, i.e. overhead and underground lines.
In our model, this is reflected by different damage proba-
bilities. For the purposes of this paper, we assume a static
(peak) demand profile for each scenario. However, we note
that multiple load patterns can be included by creating sce-
narios representing the same damage set with different de-
mand profiles.

Upgrade Options We focus on four user-definable design
options in distribution networks: 1) Hardening existing lines
to lower the probability of damage, 2) Build new lines to add
redundancy, 3) Build switches, to add operating flexibility,
and 4) building distributed generation (sources of power).
While deregulation has split network operation from gener-
ation ownership in transmission systems, in distribution sys-
tems (the focus here), this split varies from locale to locale
and is our motivation for including generation as a design
option. For example, Central Hudson has recently added
generators for resilience and reliability (Central Hudson Gas
and Electric 2014).

Optimization model Given a disaster s ∈ S, Q(s) in Fig.
1 defines the set of feasible distribution networks. The con-
straints ofQ(s) involve a number of well-known constraints
in the combinatorial optimization literature, including knap-
sacks, multi commodity flows, and tree constraints. In this
model, Eq. 1 is a capacity constraint on phase flows. When
the line is not built the flow is forced to 0 by xs. Eq. 2 forces
all phases to flow in the same direction, an engineering con-
straint. Eq. 3 states that the flow on a line is 0 when the
switch is open. Eq. 4 limits the fractional flow imbalance be-
tween the phases to a value smaller than βij . Imbalance be-
tween phases cannot be extreme otherwise equipment may
be damaged. Here, we use βij = 0.15 for transformers, and
1.0 otherwise. Eq. 5 removes components in the damage set

Q(s) = {xs, τs, ts, zs, us :

− xsij,0Qijk ≤ fsij,k ≤ x
s
ij,1Qijk ∀ij ∈ E, k ∈ Pij (1)

xsij,0 + xsij,1 ≤ xsij ∀ij ∈ E (2)

(τsij − 1)Qijk ≤ fsij,k ≤ (1− τsij)Qijk ∀ij ∈ E, k ∈ Pij (3)∑
k∈Pij

fij,k

|Pij |
(1−βij)

≤ fsij,k′ ≤

∑
k∈Pij

fij,k

|Pij |
(1+βij)

∀ij ∈ E, k′ ∈ Pij (4)

xsij = tsij ≤
{

0 if ij ∈ D′s
1 else ∀ij ∈ Ds (5)

lsi,k =

ni∑
j=0

ysijdij ,k ∀i ∈ N , k ∈ Pi (6)

0 ≤ gsi,k ≤ z
s
i,k +Gi,k ∀i ∈ N , k ∈ Pi (7)

gsi,k − l
s
i,k −

∑
j∈N

fsij,k = 0 ∀i ∈ N , k ∈ Pi (8)

0 ≤ zsi,k ≤ Zi,kui ∀i ∈ N , k ∈ Pi (9)∑
ij∈E(C)

(xsij − τsij) ≤ |V | − 1 ∀C ∈ C (10)

τsij ≤ xsij ∀ij ∈ E (11)∑
i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k (12)

∑
i∈N\L,k∈Pi

lsi,k ≥ γ
∑

i∈N\L,k∈Pi

di,k (13)

xs, ys, τs, us, ts ∈ {0, 1}} (14)

Figure 1: Set of feasible distribution networks

from the network by linking the two damage sets with the
hardening variables. Eq. 6 requires that all or none of the
load at a bus is served. Once again, this an engineering lim-
itation of most networks. Eq. 7 limits the distributed gener-
ation output by the generation capacity. Eq. 8 ensures flow
balance at the nodes for all phases. Eq. 9 caps the genera-
tion capacity installed at the nodes. Eq. 10 eliminates net-
work cycles, forcing a tree or forest topology. Eq. 11 states a
switch is used only if the line exists. Eq. 12 ensures a mini-
mum fraction λ of critical load is served. Here, we generally
require λ = 0.98. Eq. 13 ensures that a minimum fraction of
load is served. Here, γ = 0.5. Eqs. 12 and 13 are the re-
silience criteria that must be met by Q(s) and are similar to
the n − k − ε criteria of (Chen et al. 2014). Eq. 14 states
which variables are discrete.

One of the more difficult constraints in this formulation
is Eq. 10 due to possible combinatorics. There are different
ways to implement cycle constraints, and we use the formu-
lation in Fig. 2.

∑
ij∈E(C)

(x̄sij − τ̄sij) ≤ |V | − 1 ∀C ∈ C (15)

xsij ≤ x̄sij ∀ij ∈ E (16)

τsij ≥ xsij + τ̄sij − 1 ∀ij ∈ E (17)

Figure 2: Cycle constraints



While the multi-graph structure introduces a large number
of cycles, there is a relatively small number of cycles when
the multi-edges are reduced to one edge. Thus, we introduce
binary variables (linear number) for the edges of the corre-
sponding single-edge graph and enumerate the possible cy-
cles in that graph (Eq. 15). Then, Eqs 16 and 17 are used to
pass information between artificial cycle variables and the
actual line and switch variables.

For each s ∈ S , Q(s) determines the set of feasible dis-
tribution networks. There are some redundant variables in
this formulation that improve the separability of the prob-
lem. The ORDGDP is the minimum cost design that falls in
the intersection of all the Q(s) (Fig. 3).

min
∑
ij∈E

cijxij +
∑
ij∈E

κijτij +
∑
ij∈E

ψijtij

+
∑
i∈N

αiui +
∑

i∈N ,k∈Pi

ζi,kzi,k (18)

s.t.

xsij ≤ xij ∀ij ∈ E, s ∈ S (19)

τsij ≤ τij ∀ij ∈ E, s ∈ S (20)

tsij ≤ tij ∀ij ∈ E, s ∈ S (21)

zsi,k ≤ zi,k ∀i ∈ N , k ∈ Pi, s ∈ S (22)

usi ≤ ui ∀i ∈ N , s ∈ S (23)
zi,k ≤Mi,kui ∀i ∈ N , k ∈ Pi (24)

(xs, τs, ts, zs, us) ∈ Q(s) ∀s ∈ S (25)

x, τ, t, u ∈ {0, 1} (26)

Figure 3: Optimal Resilient Distribution Grid Design

Eq. 18 minimizes the cost of building lines and switches,
hardening lines, and building facilities and generation. For
notational simplicity, existing lines, switches, and genera-
tion are included as variables in the objective with 0 cost,
however in practice these enter the formulation as constants.
Eqs. 19 through 24 tie the first stage (construction) decisions
with second stage variables (Q(s)). Eq. 25 states that the
mixed-integer vector (xs, τs, ts, zs, us) constitutes a feasi-
ble distribution network for scenario s.

Generalizations Without loss of generality, the formula-
tion in Fig. 3 assumes the xsij variables are treated as con-
stants if the lines exist and are not in Ds. Furthermore, Fig.
3 also assumes that hardened lines and new lines are built
with switches. This is reflective of current industry practices
and arises from the observation that switch costs are negligi-
ble when compared with the cost of the line itself. However,
this assumption can be eliminated by modifying constraints
19 and 21 as follows:

xsij = xij ∀ij /∈ Ds
xsij ≤ xij ∀ij ∈ Ds
tsij = tij ∀ij /∈ D′s
tsij ≤ tij ∀ij ∈ D′s

(27)

Finally, for notational simplicity, the formulation of Fig.
3 also assumes ij /∈ Ds, ij ∈ D′s never occurs. However,
if necessary this assumption can be relaxed by introducing
auxiliary variables and additional constraints.

Chance Constraints For some networks, a very small
number of scenarios in S may drive the total cost in Eq. 18.
In real-world applications, the designer of the network may
lower the total investment cost by accepting some risk of not
always satisfying the resiliency criteria. In these situations,
we can relax Eqs. 12 and 13 to a set of chance constraints:

P


∑

i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k ∀s ∈ S∑
i∈N ,k∈Pi

lsi,k ≥ γ
∑

i∈N ,k∈Pi

di,k ∀s ∈ S

 ≥ 1− ε (28)

When assuming the scenarios follow a uniform distribu-
tion, this is equivalent to stating that these constraints are
violated in ε|S| of the scenarios. Thus, we can restate these
constraints as:∑

i∈L,k∈Pi

lsi,k ≥ λ
∑

i∈L,k∈Pi

di,k(1− vs) ∀s ∈ S∑
i∈N ,k∈Pi

lsi,k ≥ γ
∑

i∈N ,k∈Pi

di,k(1− vs) ∀s ∈ S∑
s∈S

vs ≤ ε|S|

(29)

Algorithms
In this section we discuss the algorithms we developed
for solving the ORDGDP. ORDGDP is a two-stage mixed
integer programming (MIP) problem with a block diago-
nal structure that includes coupling variables between the
blocks. We developed an exact algorithm that is vastly more
efficient than a commercial state-of-the-art MIP solver. We
then used the exact algorithm to develop a hybrid with vari-
able neighborhood search that is competitive with the exact
solver and is better than a heuristic used by the industry.

Scenario-Based Decomposition (SBD) Decomposition is
often used for solving two-stage stochastic MIPs (Vander-
beck and Wolsey 2010), and it can be applied to ORDGDP
after the following key observation:

Observation 0.1 The second stage variables do not appear
in the objective function. Therefore any optimal first stage
solution based on a subset of the second stage subproblems
that is feasible for the remaining scenarios, is an optimal
solution for the original problem.

Based on this observation, we can apply SBD to solve the
ORDGDP. At high level, Algorithm 1 solves problems with
iteratively larger sets of scenarios until a solution is obtained
that is feasible for all scenarios. The algorithm takes as input
the set of disasters (scenarios) and an initial scenario to con-
sider, S′. Line 2 solves ORDGDP on S′, where P (S′) and
σ∗ are used to denote the problem and solution respectively.
Line 3 then evaluates σ∗ on the remaining scenarios in S\S′.
The function l : P ′(s, σ∗)→ R+, is an infeasibility measure
that is 0 if the problem is feasible, positive otherwise. This is
implemented by maximizing the reliability constraints, i.e.
total and critical demand satisfied. It measures the gap be-
tween the delivered and the required demand (the right hand
side of the Eqs. 12 and 13). This function prices the current
solution over s ∈ S\S′. If all prices are 0, then the algorithm



terminates with solution σ∗ (lines 4-5). Otherwise, the algo-
rithm adds the scenario with the worst infeasabilty measure
to S′ (line 7).

We also tested other decomposition strategies such as
Benders and Dantzig-Wolfe, however, their performance
was tempered by the ORDGDP structure. The ORDGDP
has MIP formulations at both stages of the problem and
does not contain optimality conditions in the second stage
(only feasability conditions). These approaches rarely out
performed the commerical MIP solver.

Algorithm 1: Scenario Based Decomposition
input: A set of disasters S and let S′ = S0;

1 while S \ S′ 6= ∅ do
2 σ∗ ← Solve P (S′);
3 I ←

〈
s1, s2 . . . s|S\S′|

〉
s ∈ S \ S′ :

l(P ′(si, σ
∗)) ≥ l(P ′(si+1, σ

∗));
4 if l(P ′(I(0), σ∗)) ≤ 0 then
5 return σ∗;
6 else
7 S′ ← S′ ∪ I(0);
8 return σ∗

Greedy Algorithm A computationally efficient way of
generating feasible solutions to the ORDGDP relaxes the
coupling first stage variables and solves each scenario s ∈ S
individually. The solutions are combined by taking the max-
imum of each construction variable (X = x∪ τ ∪ t∪ z ∪ u)
over all scenarios (Algorithm 2). The switch construction
cost is determined by switches that are needed to reduce the
network into a tree for every scenario (line 4). Although the
Greedy Algorithm is simple and fast, it rarely results in an
optimal investment decision. However, it is representative of
the types of heuristics used by the industry: see Reference
(Munoz et al. 2014) for a survey.

Algorithm 2: Greedy
input: A set of disasters S;

1 for s ∈ S do
2 σs ← Solve(P ′(s));

3 σ∗(x) = max{σs(x)|∀s ∈ S}, ∀x ∈ X ;
4 Update σ∗(xi) with switches to preserve feasibility;
5 return σ∗

Variable Neighborhood Search To overcome the limita-
tions of greedy heuristics like Algorithm 2, we developed
an approach based on Variable Neighborhood Decomposi-
tion (VNS) Search (Lazic et al. 2010). The algorithm fixes
a subset of first stage variables to their current value and
searching the remaining variables for a better solution. If all
the first stage variables are fixed, the problem decomposes
into |S| separate problems that are easily solved and provide
heuristic justification for focusing on first stage variables.

More formally, P (σ, J) denotes the problem with first stage
variables, J ∈ X ,fixed to σ, i.e. xj = σ(xj), and PLP is the
LP relaxation of problem P .

Algorithm 3 describes the VNS procedure. Line 1 com-
putes the solution to the LP relaxation of the ORDGDP,
(σLP ). Line 4 counts the number of variable assignments
that are different between the solution to LP relaxation
(σLP ) and the best known solution σ∗ (σ(x) denotes the
variable assignment of x in solution σ). Line 5 orders the
variables of X by the difference between their assignments
in σ∗ and σLP . Heuristically, those variables whose assign-
ments are furthest from their LP assignment represent good
opportunities to improve σ∗. The algorithm updates the rate
at which the neighborhood size is increased (step) based on
whether or not the algorithm is in a restart situation (lines
8 and 11). If the algorithm is in a restart, the ordering of
the variables is also randomized (line 9). Line 13 computes
the best solution in the neighborhood of σ where the first
k elements of J are fixed. If the resulting solution is bet-
ter, then the algorithm proceeds with a new σ∗ (lines 15-
18)–f is used as shorthand for Eq. 18. Otherwise, the size
of the neighborhood is increased (lines 20-23). The itera-
tions terminate when the maximum number of restarts is
reached (line 2), the maximum number of neighborhood re-
sizings is reached (line 12), or a time limit is reached. In
this paper, MAXRESTARTS = 10, MAXITERATIONS = 4,
MAXTIME = 48 CPU hours, and d = 2.

Algorithm 3: Variable Neighborhood Search
input: σ′, MAXTIME, MAXRESTARTS and MAXITERATIONS;

1 Let σLP ← Solve(PLP ), σ∗ ← σ′, restart← false;
2 while t < MAXTIME and i < MAXRESTARTS do
3 j ← 0;
4 n← |x ∈ X : |σ∗(x)− σLP (x)| 6= 0|;
5 J ←

〈
π1, π2 . . . π|J|

〉
∈ X :

|σ∗(πi)− σLP (πi)| ≤ |σ∗(πi+1)− σLP (πi+1)|;
6 if restart then
7 i← i+ 1;
8 step← 4n

d
, k = |X | − step;

9 shuffle(J)
10 else
11 step← n

d
, k = |X | − step;

12 while t < MAXTIME and j ≤ MAXITERATIONS do
13 σ′ ← Solve(P (σ∗, J(1, . . . , k));
14 if f(σ′) < f(σ∗) then
15 σ∗ ← σ′;
16 i← 0;
17 restart← false;
18 j ← MAXITERATIONS;
19 else
20 j ← j + 1;
21 k = k − step

2
;

22 if j > MAXITERATIONS then
23 restart← true;

24 return σ∗

In our experimentation, VNS outperformed other popular



random walk heuristics, such as Simulated Annealing (SA).
We conjecture that this is because the ORDGDP does not
appear to have a concise neighborhood structure, which is
generally a prerequisite for successful SA implementations.
Here, we overcome this challenge by using a mixed-integer
program as a neighborhood oracle within the local search
step of VNS.

Scenario-based Variable Neighborhood Decomposition
Search (SBVNDS) Given that we have a powerful ex-
act method in Algorithm 1 as well as a VNS in Algo-
rithm 3, the natural algorithm hybridizes these approaches
to get Algorithm, SBVNDS. The algorithm proceeds exactly
the same as Algorithm 1, except that the exact solver for
Solve(P (S′)) is replaced by VNS in line 2.

Empirical Results
The algorithms were implemented using the CPLEX C++
API with Concert technology as a 32 threaded application
on Intel XEON 2.29 GHz processors. Since these are plan-
ning problems, in principle, practitioners could utilize days
of CPU time to produce a plan. However, in order to produce
a wide range of results, we limited the algorithms to 48 hours
of CPU time. Our problems are based on a modified version
of the IEEE 34 bus systems (Kersting 1991) (see Fig. 4) that
are representative of medium sized distribution systems.

(a) Urban (b) Rural

Figure 4: We generated two variations of the IEEE 34 bus
problem. Each problem contains three copies of the IEEE 34
system to mimic situations where there are three normally
independent distribution circuits that could support each
other during extreme events. These problems include 100
scenarios, 109 nodes, 118 possible generators, 204 loads,
and 148 edges, resulting in problems with > 90k binary
variables. The difference between rural (a) and urban (b)
is the distances between nodes (expansion costs and line
impedances). The cost of single and three phase under-
ground lines is between $40k and $1500k per mile (Gover-
nor and General Assembly of Virginia 2005) and we adopt
the cost of $100k per mile and $500k per mile, respectively.
The cost of single and three phase switches is estimated to
be $10k and $15k, respectively (Bialek 2013). Finally, the
installed cost of natural gas-fired CHP in a microgrid is esti-
mated to be $1500k per MW (EIA 2010). Full details of the
problems are available at http://public.lanl.gov/
rbent/.

Scenarios for this paper are based on damage caused by
ice storms, whose intensity tends to be homogeneous on the

scale of distribution systems (Sa 2002). Intensities are mod-
eled as damage rates per mile on power poles and are trans-
formed into the probability a power line segment of one mile
length is damaged (a pole has failed). Empirically, we find
that 100 randomly created scenarios is sufficient to capture
the salient features of the distribution. Each scenario con-
tains two sets of line failures, one for hardened lines (D′s)
and a second for lines that are not hardened (Ds).

(a) CPU time (b) Objective value

Figure 5: Sensitivity of the CPU time and objective value to
changes in λ on the Urban problem for SBD when hardened
lines are not damageable. Due to short distances, the solu-
tion favors hardening many lines. The required hardening is
relatively insensitive to the amount of damage and λ. How-
ever, there are spikes in problem difficulty at transitions in λ
that require additional load service.

Table 1 provides results when hardened lines are not dam-
aged or are damaged at rates of 1

100 or 1
10 of the unhardened

rate. There are a number of important observations in these
tables. First, CPLEX by itself is computationally uncompet-
itive. Only when the hardened lines are not damaged does
CPLEX complete within the time limit. These problems are
“easier” because hardened lines are robust and relatively in-
expensive, enabling CPLEX to eliminate many solutions.
The objective value for Greedy is always worse than opti-
mal. The exact method SBD is much more computationally
efficient than CPLEX and is able to solve many more prob-
lems to optimality indicating that CPLEX is unable to recog-
nize the scenario structure in the problems. However, SBD is
sensitive to which scenarios are included (function l), and if
poor choices are made, it begins to resemble CPLEX. How-
ever, the meta-heuristic SBVNDS is able to overcome these
limitations. It is much faster than SBD, and almost always
achieves the optimal solution. This indicates that heuristic
methods based on combining powerful techniques like VNS
with strong exact algorithms are very good on this type of
2-stage mixed integer programming problems.

Critical load constraint Figures 5 and 6 show some re-
sults for rural and urban problems when the required frac-
tion of critical load served is varied. In general, peaks in
CPU time correspond to discrete jumps in the amount of
load served as λ increases.

Chance constraints Fig. 7 shows results when the re-
siliency criteria are relaxed to the chance constraints in



Urban, Hardened lines are not damageable (a)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% 19984.7 322.9 1044.5 465.8 322.9 289.9 353.7
25% 166352 635.4 1643.5 8028.3 635.4 811.4 635.4
50% TO X 2021.2 2840.7 647.7 791.3 647.7
75% TO X 1874.2 991.1 652.1 692.5 652.1
100% TO X 1934.4 712.7 654.1 662.5 654.1

Rural, Hardened lines are not damageable (b)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% 33083.5 2337.0 3274.8 1837.9 2337.0 503.3 2337.0
25% 32170.8 2390.3 3427.6 571.0 2390.3 457.8 2390.3
50% 20840.3 2397.6 3449.9 471.2 2397.6 421.2 2397.6
75% 15556.1 2400.4 3452.7 337.5 2400.4 299.8 2400.4
100% 17225.9 2400.6 2780.6 385.8 2400.6 346.9 2400.6

Urban, Hardened lines are damaged at a 1
100

rate (c)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% 159166 445.8 1061.7 2232.9 445.8 2721.3 476.5
25% TO X 1441.9 14299.2 662.9 2994.7 701.5
50% TO X 1571.2 2848.7 646.0 1917.7 760.2
75% TO X 1787.3 16040.6 687.6 1481.4 687.6
100% TO X 2744.8 24270.3 1320.5 2157.5 1330.5

Rural, Hardened lines are damaged at a 1
100

rate (d)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% 77947.9 2363.0 3375.4 759.0 2363.0 576.9 2363.0
25% TO X 8238.6 TO X 919.4 6744.3
50% TO X 12336.0 TO 9288.9 4361.8 7121.0
75% TO X 23099.5 TO X 23142.6 11500.0
100% TO X 16600.7 TO X 5879.5 9797.3

Urban, Hardened lines are damaged at a 1
10

rate (e)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% TO X 859.1 5265.1 460.8 2505.7 594.1
25% TO X 1742.2 12530.3 961.2 2843.2 961.2
50% TO X 3133.8 34822.7 1417.2 3363.5 1555.2
75% TO X 3472.0 TO X 7486.5 1894.2
100% TO X 10479.1 TO X 32289.8 7959.4

Rural, Hardened lines are damaged at a 1
10

rate (f)
CPLEX Greedy SBD SBVNDS

CPU OBJ OBJ CPU OBJ CPU OBJ
10% TO X 7503.3 141718.0 4325.9 7756.8 4424.8
25% TO X 18021.3 TO X 21993.5 7371.9
50% TO X 28865.0 TO 12017.7 74729.0 12031.2
75% TO X 31887.0 TO 13522.2 107165.0 13500.8
100% TO X 32901.9 TO 16794.4 114354.0 16778.2

Table 1: These tables compare the performance of the algorithms when hardened lines cannot be damaged (a, b), are damaged
at 1

100 the rate of unhardened lines (c, d), and damaged at 1
10 the rate of unhardened lines (e, f). The columns denoted by CPU

and OBJ refer to CPU time and objective value, respectively. We omit the CPU time of Greedy as it is always less than 60 CPU
seconds. The rows refer to the probability a 1 mile segment of a line is damaged.

(a) CPU time (b) Objective value

Figure 6: Sensitivity of the CPU time and objective value
to changes in λ for SBD on the Rural problem when hard-
ened lines are not damageable. Because of long distances,
the solution favors adding generation and is sensitive to the
amount of damage and λ.

Eq. 29 and ε is varied. Interestingly, CPU time is not im-
pacted too greatly by damage rates. Also, the solution is rela-
tively insensitive to the choice of ε as damage rates increase,
indicating that an “easier” problem with small ε could be
used to approximate a solution to the harder problems.

Conclusions
We formulated, proposed and tested new algorithms to solve
the ORDGDP. Our primary contribution is an algorithm that
combines the benefits of an exact method based on scenario
decomposition with variable neighborhood search. This al-
gorithm is shown to scale well to problems that are difficult
for exact methods, without sacrificing solution quality. Fu-
ture directions include: 1) Using a more accurate model of
the 3-phase AC power flow equations to better exclude infea-
sible solutions. Options include the DistFlow approximation
in (Baran and Wu 1989) and no-good cuts. 2) Scaling to en-
tire city-sized distribution networks. We considered a feeder
system connected to a single substation in this paper. How-

(a) CPU time (b) Objective value

Figure 7: These figures show how the CPU time and solution
quality changes when chance constraints (ε) is modified for
the Rural network, when hardened lines are not damageable.
These plots are generated by SBD.

ever, distribution grids in a city can span multiple substa-
tions. In general, we expect city-sized networks can be parti-
tioned into subproblems to reduce complexity and is a topic
of future work. 3) Including a variation of the restoration
problem posed by (Coffrin, Hentenryck, and Bent 2012).
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